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A.1 Instructions for coding irregularities
The following pages present the instructions given to our research assistants for coding our
training sample of statutory forms from 3,000 polling stations.
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Project Instructions for:
“Hidden in Plain Sight? Detecting Electoral

Irregularities Using Statutory Results”

Last updated: April 30, 2021

�is project requires you to determine whether documents from Kenya’s 2013 presidential
election contain any irregularities. Each form is provided as a single, two-page PDF document.
A master spreadsheet provides the names of all documents and provides a space for each
potential irregularity to be coded. Your job is to go through each individual document,
coding each potential problem. Your responses will always be 0 or 1, except in a few rare
cases where the data to be coded cannot be discerned, in which case you may enter NA.

Each row of the spreadsheet corresponds to an individual document. �e �rst �ve columns
(A-E) of the master spreadsheet provide information about the document, and will already
be �lled in. You will enter data into the next nine columns (F-N).

�e remainder of these instructions are as follows. �e next two pages provide a complete
example of the documents you will be coding. As this example shows, the �rst page typically
has a black, red, and green border with the IEBC logo at the top, while the second page
consists mostly of a large table. �e remainder of this document then provides speci�c
instructions for each irregularity to be coded.
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Figure 1: An example statutory result (page 1).
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Figure 2: An example statutory result (page 2).
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Column F: “Does the form have a QR code?”

�e QR code can be found in the top-le� corner of the �rst page of the document, usually
just beneath the serial number. �e QR code is a unique code embedded in a square-shaped,
black-and-white pattern.

Code this variable as 1 if the QR code is present and completely visible. Code this variable as
0 if the QR code is missing or obscured. Figure 3 provides three examples of forms which
should be coded as 0 and Figure 4 provides three examples of forms that should be coded as
1.

Figure 3: In these three examples, the QR codes are obscured or missing. Column F should
be coded as 0 for these cases.

Figure 4: In these three examples, the QR codes are present and legible. Column F should be
coded as 1 for these cases.
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Column G: “Did the document scan correctly?”

Code this variable as 1 if there are no indications of an error while scanning, including
stretched out text, miscoloration, or other visual artifacts. Code this variable as 0 if any such
problems are apparent. Figure 5 provides two examples of forms which should be coded as 0
and Figure 6 provides two examples of forms that should be coded as 1.

Figure 5: In these two examples, there is no evidence of problems with the document scan.
Column G should be coded as 0 for these cases.

Figure 6: In these two examples, there is evidence that the document did not scan correctly.
Column G should be coded as 1 for these cases.
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Column H: “Is the �rst page stamped?”

�e stamp is a circle with the words “i.e.b.c. presiding officer” or “iebc returning
officer” inside. It is usually placed near the bottom of the �rst page, but can be present
anywhere on the �rst page, sometimes in multiple places.

Code this variable as 1 if the stamp is present on the �rst page, such that the words “presiding
o�cer” (or “returning o�cer”) are legible. Code this variable as 0 if the stamp is missing.
Figure 7 provides two examples of forms which should be coded as 0 and Figure 8 provides
two examples of forms that should be coded as 1.

Figure 7: In these two examples, the stamp is missing or illegible on the �rst page. Column H
should be coded as 0 for these cases.

Figure 8: In these two examples, the stamp is present and legible on the �rst page. Column H
should be coded as 1 for these cases.
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Column I: “Is the presiding o�cer signature present?”

�e presiding o�cer signature can be found at the bottom of the �rst page of the document.
�e signature is located just below the presiding o�cer’s name and ID, next to the date.

Code this variable as 1 if a signature is present. Code this variable as 0 if no signature is
present. Figure 9 provides three examples of forms which should be coded as 0 and Figure 10
provides three examples of forms that should be coded as 1.

Figure 9: In these two examples, the presiding o�cer signature is missing. Column I should
be coded as 0 for these cases.

Figure 10: In these three examples, the presiding o�cer signature is present. Column I should
be coded as 1 for these cases.
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Column J: “Is there at least one candidate/candidate agent listed?”

�e candidate/candidate agent list is the large table that can be found in the middle of the
second page of the document. Each row of the table provides the name of the candidate or
agent, a space for their signature, and a space for a reason for refusing to sign.

Code this variable as 1 if there is at least one candidate or candidate agent listed in the le�
column of this table. Code this variable as 0 if no candidate or agent names are listed. Figure
11 provides two examples of forms which should be coded as 0 and Figure 12 provides two
examples of forms that should be coded as 1.

Figure 11: In these two examples, there are no candidate or candidate agents listed. Column J
should be coded as 0 for these cases.

Figure 12: In these two examples, there are candidates or candidate agents listed. Column J
should be coded as 1 for these cases.
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Column K: “For each listed candidate/candidate agent, is there a signature?”

�e candidate/candidate agent signatures can be found in the large table in the middle of the
second page of the document. Each row of the table provides the name of the candidate or
agent, a space for their signature, and a space for a reason for refusing to sign.

Code this variable as 1 if there is a signature in the middle column of this table for each
candidate or candidate agent listed in the le� column of this table. Code this variable as 0 if
any candidate or agent listed does not have a corresponding signature. Figure 13 provides
two examples of forms which should be coded as 0 and Figure 14 provides two examples of
forms that should be coded as 1.

Figure 13: In these two examples, there is at least one candidate or candidate agent signature
missing. Column K should be coded as 0 for these cases.

Figure 14: In these two examples, there are no candidate or candidate agent signatures missing.
Column K should be coded as 1 for these cases.
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Column L: “Is there at least one signature of a candidate/candidate agent?”

�e candidate/candidate agent signatures can be found in the large table in the middle of the
second page of the document. Each row of the table provides the name of the candidate or
agent, a space for their signature, and a space for a reason for refusing to sign.

Code this variable as 1 if there is at least one candidate or candidate agent signature in the
middle column of this table. Code this variable as 0 if no candidate or agent signatures are
present. Figure 15 provides two examples of forms which should be coded as 0 and Figure 16
provides two examples of forms that should be coded as 1.

Figure 15: In these two examples, there are no candidate or candidate agent signatures.
Column L should be coded as 0 for these cases.

Figure 16: In these two examples, there is at least one candidate or candidate agent signature.
Column L should be coded as 1 for these cases.
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ColumnM: “Do the candidate/candidate agent signatures appear di�erent?”

�e candidate/candidate agent signatures can be found in the large table in the middle of the
second page of the document. Each row of the table provides the name of the candidate or
agent, a space for their signature, and a space for a reason for refusing to sign.

Code this variable as 1 if the signatures in the middle column of this table appear di�erent
from one another. Code this variable as 0 if the signatures appear similar. Figure 17 provides
three examples of forms which should be coded as 0 and Figure 18 provides three examples
of forms that should be coded as 1.

Figure 17: In these three examples, the candidate or candidate agent signatures appear similar.
Column M should be coded as 0 for these cases.

Figure 18: In these three examples, the candidate or candidate agent signatures appear di�erent.
Column M should be coded as 1 for these cases.
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Column N: “Do the vote tallies or totals show any sign of crossing out or editing?”

Vote tallies can be found in the middle of the �rst page of the document, just beneath the
bold text “�e number of valid votes cast in favour of each candidate.” �ey are embedded
in a table with 21 rows, where the le� column consists of candidate names (e.g., “Uhuru
Kenyatta”) and the right columns leave space for handwritten tallies (under “No. of Valid
Votes Cast”). Vote totals can be found in the top-middle of the �rst page of the document,
just beneath the polling station, stream, and constituency information. �ey are embedded
in a table with 7 rows, where the le� column consists of typed inputs (e.g., “Total number of
votes cast”) and the right column leaves space for handwritten tallies.

Code this variable as 1 if the handwritten tallies or totals show any sign of having been crossed
out or edited. Code this variable as 0 if none of the vote tallies or totals have any such signs.
Figure 19 provides three examples of forms which should be coded as 1 because of bad tallies.
Figure 20 provides three examples of forms which should be coded as 1 because of bad totals.
Figure 21 provides three examples of good tallies, while Figure 22 provides three examples of
good totals.
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Figure 19: In these �ve examples, the vote tallies show signs of crossing out or editing. Column
N should be coded as 1 for these cases.

Figure 20: In these three examples, the vote totals show signs of crossing out or editing.
Column N should be coded as 1 for these cases.
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Figure 21: In these �ve examples, the vote tallies show no signs of crossing out or editing.
ColumnN should be coded as 0 for these cases if the vote totals also show no signs of crossing
out or editing.
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Figure 22: In these three examples, the vote totals show no signs of crossing out or editing.
ColumnN should be coded as 0 for these cases if the vote tallies also show no signs of crossing
out or editing.
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(End of instructions provided to research assistants)
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A.2 Details about model estimation

A.2.1 Model architectures
We tune across five model architectures: {inception, average, wide, deep, hard}.1 Note that
throughout, we refer to a “block” as the combination of a 1-pixel empty border padding
layer (which helps prevent the edges near the border getting ignored during training), a
convolutional layer, a batch normalization, an exponential linear unit layer, and a pooling
layer (in that order). The details of each model are as follows.

The inception model’s base model is the InceptionV3 model (Szegedy et al. 2016), trained
on the ImageNet database (Deng et al. 2009). We take the top layer of this model (its output),
add a pooling layer, a batch normalization layer, a dense layer with 1,024 exponential linear
units (ELUs), and then a 50% dropout layer before the activation layer using a sigmoid
function. We train the model such that all layers are trainable, including those in the
underlying InceptionV3 model.2

The “average” model’s feature extraction step consists of three layers: a block in which
the convolutional step has 32 filters, another block with 64 filters, and a third block with
128 filters. The prediction step is also grouped into three layers. In the first fully-connected
layer we have a 10% dropout step, a flattening step, a dense step with 1,024 ELUs, a
batch normalization, and an activation step. In the second fully-connected layer we have
another 10% dropout step followed by a dense step with 512 ELUs, batch normalization, and
then activation. The final layer is another 10% dropout, a dense step reducing to the final
predictions, which are then batch normalized and activated using the sigmoid function.

The “wide” model builds on the average model. The first difference is that the feature
extraction step includes a fourth block where the convolutional step has 256 filters. The
second difference is that in the prediction step, the number of ELUs in the first fully-connected
layer is 4,096 (still reducing down to 512).

The “deep” model differs from the average model in that the feature extraction step has
7 blocks, wherein the convolutional layers have 16, 16, 16, 16, 32, 32, and 64 filters. The
prediction step has three fully-connected layers instead of the average model’s two, with
2,048, 1,024, and 256 ELUs, respectively.

Finally, the “hard” differs from the average model in that the feature extraction step has
5 blocks, wherein the convolutional layers have 32, 64, 64, 128, and 256 filters. The prediction
step has three fully-connected layers instead of the average model’s two, with 4,096, 2,048,
and 512 ELUs, respectively.

1 . The inception model is named for the base model we use; average because it is a reasonable starting
point for a classification task of average difficulty; wide because the model appears wide if visualized vertically
(due to the large number of ELUs in the first fully-connected layer); deep because the model appears tall if
visualized vertically (due to the number of blocks in the feature extraction step); and hard because it is a
complex model for difficult classification tasks.

2 . Usually only the top few layers of a transfer learning model need to be retrained, with the rest kept
“frozen.” However, since our application is somewhat different than typical object-detection tasks—e.g., we
are looking for blank spaces within a table instead of identifying faces—our models perform better when all
layers are kept trainable.
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A.2.2 Data augmentations
All images, irrespective of data augmentation, undergo the following preprocessing steps. First,
images are cropped to the region of the form where the relevant feature is consistently found.
For instance, the QR code is always in the top-left corner of the form, so we automatically
zoom in on this region for the QR code irregularity. Second, the cropped images are resized
to be square, so that the pixel width and pixel height are equal (the precise size is determined
by the tuning parameters discussed below). This step increases computational stability and
is standard in deep learning models. Third, all images are denoised using a median filter.
This technique reduces noise while preserving edges better than other filters, e.g. a Gaussian
filter, do. Finally, image pixel values are rescaled from RGB coordinates ranging over [0, 255]
so that they are expressed as a proportion between 0 and 1.

Besides these preprocessing steps, we also explored data augmentation techniques. We
emphasize that only one of the tuned models studied in the manuscript (“form not stamped”)
uses data augmentation, and removing it does not substantially impact performance or our
regression results; none of our findings depend on augmented data. However, since they are
part of our tuning procedure, the details are provided here.

The Python module we use to fit our deep learning modules, keras (Chollet 2015), provides
a number of built-in functions for augmentation through its ImageDataGenerator class. The
augmentations relevant to our data and model are as follows:

1. samplewise_center: Set the global mean across all pixels to 0.

2. samplewise_std_normalization: Divide all pixels by the standard deviation across all
pixels.

3. horizontal_flip: Flip the image horizontally with 50% probability.

4. vertical_flip Flip the image vertically with 50% probability.

5. brightness_range: Shift the brightness of all pixels by a random value within the range
given.

6. zoom_range: Zoom in or out of the image by a random value up to the value given.

7. channel_shift_range: Shift red, blue, and green channels of all pixels by a random value
up to the value given.

8. rotation_range: Rotate the image in either direction by a random value up to the value
given.

9. width_shift_range: Shift the image horizontally by a random value up to the value
given.

10. height_shift_range: Shift the image vertically by a random value up to the value given.

11. shear_range: Shear the image (i.e., fix one axis and rotate the other axis) by a random
value up to the value given.

21



For all augmentations that reveal pixels outside the existing boundaries (e.g., by shifting or
rotating the image), empty pixel values are filled using the value of the nearest neighbor, the
default setting in keras.

For the purposes of tuning our models, we use three settings: {none, low, high}. In the
none condition, none of these data augmentations are applied. In the low setting, we turn on
samplewise centering, samplewise scaling, horizontal flipping, and vertical flipping; set the
brightness range and zoom range to [0.95, 1.05]; set the channel shift range to 5; and set the
rotation range, width shift range, height shift range, and shear range to [−0.05, 0.05]. In the
high setting, we turn on samplewise centering, samplewise scaling, horizontal flipping, and
vertical flipping; set the brightness range and zoom range to [0.70, 1.30]; set the channel shift
range to 30; and set the rotation range, width shift range, height shift range, and shear range
to [−0.30, 0.30].

We note here that keras’s data augmentation is not replication-safe because it does not
respect random seeds set at the beginning of a script call. We therefore implement a custom
ImageDataGenerator class and a custom Generator sequence to call the class, bypassing this
problem. This code can be found in our replication archive.

A.2.3 Tuning procedures
For each of our nine irregularities, we tune over the 60 models in a {5× 3× 2× 2} grid. This
grid consists of:

• Model architecture: inception, average, wide, deep, hard;

• Data augmentation: none, low, high;

• Image size: 256 x 256 pixels, 512 x 512 pixels; and

• Batch size: 16, 32.

These 540 models were run using slurm arrays on Cardiff’s high-performance computing
cluster, Supercomputing Wales, the national supercomputing research facility for Wales. Each
model was allowed to run until either: its out-of-sample F1 achieved 0.99, it reached 300
epochs, or it timed out after 48 hours (the maximum run-time allowed on the cluster).

A.2.4 Best-performing models
Table A1 provides the parameters that maximized predictive performance for each of the
nine irregularities.
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Table A1: Hyperparameters of the best-fitting models for each
irregularity

Irregularity Architecture Augmentation Image size Batch size Epochs

QR code missing deep none 256 16 20
Poor scan quality deep none 512 16 20
Forms not stamped inception little 256 32 30
Presiding officer did not sign deep none 512 16 30
No agents listed deep none 256 16 20
Any agent did not sign inception none 256 32 40
No agents signed deep none 512 32 20
Agent signatures identical deep none 512 32 20
Results edited inception none 512 16 30
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A.3 Confusion matrices, classification model training
Below are confusion matrices from our image classification models. Each is constructed using
the true test sample of approximately 500 images left out from model training. Note that
some samples are slightly smaller than 500 due to data missingness (i.e., missing, partially
missing, corrupted, or otherwise incomplete statutory forms).

Table A2: Confusion matrix, QR code missing

True non-irregularity True irregularity
Predicted non-irregularity 493 1
Predicted irregularity 1 5

Table A3: Confusion matrix, poor scan quality

True non-irregularity True irregularity
Predicted non-irregularity 497 0
Predicted irregularity 0 0

Table A4: Confusion matrix, form not stamped

True non-irregularity True irregularity
Predicted non-irregularity 476 8
Predicted irregularity 4 10

Table A5: Confusion matrix, presiding officer did not sign

True non-irregularity True irregularity
Predicted non-irregularity 491 3
Predicted irregularity 0 4
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Table A6: Confusion matrix, no agents listed

True non-irregularity True irregularity
Predicted non-irregularity 484 2
Predicted irregularity 1 10

Table A7: Confusion matrix, any agent did not sign

True non-irregularity True irregularity
Predicted non-irregularity 466 5
Predicted irregularity 5 21

Table A8: Confusion matrix, no agents signed

True non-irregularity True irregularity
Predicted non-irregularity 483 0
Predicted irregularity 0 14

Table A9: Confusion matrix, agent signatures appear identical

True non-irregularity True irregularity
Predicted non-irregularity 481 1
Predicted irregularity 1 14

Table A10: Confusion matrix, results edited

True non-irregularity True irregularity
Predicted non-irregularity 321 16
Predicted irregularity 8 155
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A.4 Computation of F1 scores for Cantú (2019)
Table 1 in Cantú (2019) provides a confusion matrix with mean values across 20 samples,
each of 150 images. We can approximate the F1 score across this sample by multiplying each
cell in the table by 3,000 (20 × 150). This gives 2,790 true negatives (top-left), 210 false
positives (top-right), 450 false negatives (bottom-left), and 2,550 true positives (bottom-right).
Applying the formula supplied in the main text (our paper), the approximate precision is
0.924, while the approximate recall is 0.850. F1 is then given by the harmonic mean:

F1 (Cantú) = 2

[
(0.924)(0.850)

0.924 + 0.850

]
≈ 0.885.
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A.5 Empirical distribution of irregularities
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Figure A1: Frequency of electoral irregularities by constituency. Each pane
refers to a type of irregularity: document problems, procedure problems, agent
problems, and edited results. Each dot is the estimate for the constituency’s
fixed effect from a null model, with lines for 95% confidence intervals. Colors
correspond to counties.
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A.6 Covariate data sources
Population density data come from Linard et al. (2012), and is computed as the log plus
one of raw population density. Data on terrain ruggedness are calculated from a digital
elevation model and data provided by the United States Geological Survey (2004). Ethnic
fractionalization is computed as one minus the sum of squares of the size of each ethnic
group expressed as a proportion of registered voters; these proportions are estimated from the
2013 voter register using the method described in Harris (2015). Polling station isolation is
computed as the minimum distance to the nearest polling center, weighted by the number of
registered voters, using a method described in Doogan et al. (2018). Data on the poverty rate
are described in Linard et al. (2012), night time lights data are from National Oceanic and
Atmospheric Administration (2013), and literacy rate data are given in Bosco et al. (2017).
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A.7 Full results for Figure 3 (in main text)

Table A11: Full results from Figure 3 in the main text

Document prob. Procedure prob. Agent prob. Results edited
Gov’t stronghold 0.00 −0.04 0.01 −0.02

(0.00) (0.04) (0.03) (0.05)
Opp. stronghold 0.00 0.15∗ 0.05 −0.32∗

(0.01) (0.05) (0.03) (0.05)
Population density 0.00∗ 0.01 −0.00 0.03∗

(0.00) (0.01) (0.00) (0.01)
Terrain ruggedness −0.00 −0.01 −0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Ethnic frac. −0.00 0.03 0.01 0.05∗

(0.00) (0.02) (0.01) (0.02)
Poll. station isolation −0.01 −0.11 0.17 0.08

(0.02) (0.19) (0.11) (0.18)
Poverty rate 0.00 0.00 −0.01∗ −0.03∗

(0.00) (0.01) (0.01) (0.01)
Literacy rate −0.00 −0.01 0.00 −0.03∗

(0.00) (0.01) (0.01) (0.01)
Night lights 0.00 −0.01 0.00 0.01

(0.00) (0.01) (0.00) (0.01)
∗p < .05. All models include constituency fixed effects and cluster standard errors by constituency.
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A.8 Robustness to alternative definitions of strongholds
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Figure A2: Frequency of electoral irregularities by polling station partisanship.
Squares indicate government strongholds, with circles for opposition strongholds,
relative to the baseline of competitive areas. Lines indicate 95% confidence
intervals. Here, government and opposition strongholds are defined as polling
stations in which at least 75% of the vote went to Kenyatta or Odinga,
respectively.
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Figure A3: Frequency of electoral irregularities by polling station partisanship.
Squares indicate government strongholds, with circles for opposition strongholds,
relative to the baseline of competitive areas. Lines indicate 95% confidence
intervals. Here, government and opposition strongholds are defined as polling
stations in which at least 85% of the vote went to Kenyatta or Odinga,
respectively.
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Figure A4: Frequency of electoral irregularities by polling station partisanship.
Squares indicate government strongholds, with circles for opposition strongholds,
relative to the baseline of competitive areas. Lines indicate 95% confidence
intervals. Here, government and opposition strongholds are defined as polling
stations in counties with at least 80% Kikuyu and Kalenjin or Luo and Kamba
voters, respectively.
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A.9 Full regression results, Table 3

Table A12: Full results for Table 3 in the main text, government
strongholds

Doc. prob. Proc. prob. Agent prob. Results edited Any prob.
Observed −0.00∗ 0.01 −0.01 −0.03 −0.05

(0.00) (0.02) (0.01) (0.02) (0.03)
Population density 0.00 0.03 −0.01 0.04 0.02

(0.00) (0.03) (0.01) (0.03) (0.04)
Terrain ruggedness −0.00 −0.00 0.00 0.02 0.00

(0.00) (0.02) (0.01) (0.02) (0.02)
Ethnic frac. −0.00 0.03 −0.03 0.06 0.04

(0.00) (0.07) (0.03) (0.07) (0.08)
Poll. station isolation −0.03 1.53 −0.83 −2.87∗ −2.45

(0.03) (1.50) (0.78) (1.35) (1.69)
Poverty rate 0.00 0.01 −0.01 0.02 0.03

(0.00) (0.04) (0.03) (0.04) (0.05)
Night lights 0.00 0.02 −0.00 0.02 0.01

(0.00) (0.03) (0.02) (0.03) (0.03)
Literacy rate −0.00 −0.06 0.00 −0.02 −0.01

(0.00) (0.05) (0.02) (0.05) (0.05)
∗p < .05. All models include constituency fixed effects and cluster standard errors by constituency.

33



Table A13: Full results for Table 3 in the main text, opposition
strongholds

Doc. prob. Proc. prob. Agent prob. Results edited Any prob.
Observed −0.00 0.02 0.02 0.01 0.02

(0.00) (0.03) (0.02) (0.03) (0.04)
Population density 0.00 0.07 −0.01 −0.03 −0.04

(0.00) (0.04) (0.03) (0.04) (0.05)
Terrain ruggedness 0.00 0.00 0.02∗ −0.02 −0.01

(0.00) (0.02) (0.01) (0.02) (0.02)
Ethnic frac. −0.01 0.24∗ 0.18 0.22 0.32∗

(0.01) (0.09) (0.11) (0.12) (0.11)
Poll. station isolation 0.03 2.14∗ −0.40 2.53∗ 1.66∗

(0.02) (0.42) (0.33) (0.51) (0.56)
Poverty rate −0.00 0.03 0.02 0.03 0.02

(0.00) (0.04) (0.03) (0.04) (0.05)
Night lights 0.00 −0.02 0.02 0.02 0.01

(0.00) (0.04) (0.04) (0.04) (0.04)
Literacy rate −0.00 −0.01 0.01 −0.00 0.07

(0.00) (0.05) (0.05) (0.06) (0.05)
∗p < .05. All models include constituency fixed effects and cluster standard errors by constituency.
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Table A14: Full results for Table 3 in the main text, competitive
areas

Doc. prob. Proc. prob. Agent prob. Results edited Any prob.
Observed 0.00 0.02 −0.01 −0.02 −0.00

(0.00) (0.02) (0.02) (0.02) (0.02)
Population density 0.01 0.04 −0.02 0.05 0.05

(0.00) (0.03) (0.02) (0.03) (0.03)
Terrain ruggedness −0.00 0.01 −0.01 0.01 0.00

(0.00) (0.02) (0.01) (0.02) (0.03)
Ethnic frac. 0.01 0.08 −0.01 −0.03 −0.04

(0.01) (0.05) (0.04) (0.04) (0.06)
Poll. station isolation −0.00 0.65 0.44 0.14 1.19

(0.02) (0.65) (0.38) (0.72) (0.79)
Poverty rate 0.00 −0.03 −0.02 −0.03 −0.09∗

(0.00) (0.04) (0.02) (0.04) (0.04)
Night lights −0.00 −0.02 −0.00 −0.02 −0.03

(0.00) (0.03) (0.02) (0.03) (0.04)
Literacy rate −0.00 −0.02 0.02∗ −0.06∗ −0.05

(0.00) (0.02) (0.01) (0.02) (0.03)
∗p < .05. All models include constituency fixed effects and cluster standard errors by constituency.
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Table A15: Full results for Table 3 in the main text, all polling
stations

Doc. prob. Proc. prob. Agent prob. Results edited Any prob.
Observed −0.00 0.02 −0.00 −0.01 −0.01

(0.00) (0.01) (0.01) (0.01) (0.02)
Population density 0.00∗ 0.04∗ −0.01 0.03 0.02

(0.00) (0.02) (0.01) (0.02) (0.02)
Terrain ruggedness −0.00 0.00 0.00 −0.00 −0.01

(0.00) (0.01) (0.01) (0.01) (0.01)
Ethnic frac. 0.00 0.10∗ 0.02 0.04 0.04

(0.00) (0.04) (0.03) (0.04) (0.05)
Poll. station isolation 0.00 1.26∗ 0.08 0.72 1.08

(0.01) (0.55) (0.27) (0.75) (0.62)
Poverty rate 0.00 −0.00 −0.01 0.00 −0.02

(0.00) (0.03) (0.01) (0.02) (0.03)
Night lights −0.00 0.00 0.00 0.01 0.00

(0.00) (0.02) (0.01) (0.02) (0.02)
Literacy rate −0.00 −0.03 0.01 −0.04 −0.02

(0.00) (0.02) (0.01) (0.02) (0.02)
∗p < .05. All models include constituency fixed effects and cluster standard errors by constituency.
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A.10 Regression discontinuity analysis
In 2013, Kenya’s election commission had a soft cap of 800 voters per polling station. We can
use this administrative rule to estimate the (plausibly) causal effect of creating a new polling
station on the likelihood of experiencing Form 34A irregularities via a regression discontinuity
design. By comparing error rates in polling places with one station (and just fewer than 800
voters) to those with two stations (and just over 800 voters) we can examine whether changes
in workload at the polling station affect the error rate at that polling station. A presiding
officer (PO) in a polling station with 800 registered voters would face a more burdensome
administrative task than a PO at a 401 registered voter polling station, and so we expect
that this reduction in workload would lead to fewer errors.

Document problems

Procedure problems

Agent problems

Edited results

−0.15 −0.10 −0.05 0.00 0.05
Regression discontinuity effect

Figure A5: Regression discontinuity design analysis. Each dot represents the
estimated effect of a polling station being just above the threshold of 800 voters
for each type of irregularity. Thick lines represent 90% confidence intervals, with
thin lines for 95% confidence intervals.

Estimates from these models are plotted in Figure A5. Consistent with the “fumble”
hypothesis, our estimates suggest that edited results and agent problems are less likely
in polling places with just over 800 voters, though the results just barely miss statistical
significance. This evidence provides additional support for the results presented in the main
analysis, which suggest that irregularities most typically arise through human error endemic
in large-scale election administration tasks.
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